
Inductive Generalization in Reinforcement
Learning from Specifications

Vignesh Subramanian1, Rohit Kushwah2, Subhajit Roy2, and Suguman Bansal1

1 School of Computer Science, Georgia Institute of Technology, USA
{vignesh,suguman}@gatech.edu

2 Department of Computer Science, Indian Institute of Technology Kanpur, India
{krohitk,subhajit}@cse.iitk.ac.in

Abstract. We present a novel inductive generalization framework for RL
from logical specifications. Many interesting tasks in RL environments
have a natural inductive structure. These inductive tasks have similar
overarching goals but they differ inductively in low-level predicates and
distributions. We present a generalization procedure that leverages this
inductive relationship to learn a higher-order function, a policy generator,
that generates appropriately adapted policies for instances of an inductive
task in a zero-shot manner. An evaluation of the proposed approach on a
set of challenging control benchmarks demonstrates the promise of our
framework in generalizing to unseen policies for long-horizon tasks.

1 Introduction

Formal methods community has contributed strongly to reinforcement learning
(RL), especially from formal specifications [1, 7, 9, 10, 13, 14, 20, 25, 38, 40].
These techniques may not provide strong guarantees. In fact, their inability to
offer rigorous guarantees has been proven [2, 39]. Nevertheless, these methods
provide a principled approach for handling learning over long-horizon tasks.

Generalization remains one of the fundamental challenges in RL. While
RL agents can achieve impressive performance on individual tasks, they often
struggle to transfer learned behaviors to even slightly modified scenarios. Most RL
approaches lack formal mechanisms to capture and exploit structural relationships
between tasks, instead relying on implicit generalization through neural network
function approximation. This often leads to superficial generalization that fails
to capture deeper task similarities. Recent work has attempted to address these
challenges through meta-learning and goal-conditioned learning, but developing
RL algorithms that can generalize remains an open challenge.

While the challenge of overall generalization is too large to address, this work
presents a novel notion of generalization, which we call inductive generalization.
This is based on leveraging inductive similarities between tasks to generalize.
Inductive relationships are fundamental to computational tasks because they
capture how complex behaviors can be built from simpler ones through systematic
transformation. They appear naturally whenever tasks exhibit natural recursion
or iteration. Our insight is that once we understand how to transform from step

2 V. Subramanian et al.

i to step i+ 1, we can systematically generalize to handle arbitrarily many steps.
This naturally arising pattern is particularly evident in robotics and control
tasks, where physical constraints often impose regular structure. By formalizing
these inductive relationships, we can move beyond treating each task instance as
independent and instead leverage their inherent structural connections to enable
systematic generalization.

To this end, we present a logic-guided approach to inductive generalization
in RL. We use logical specifications to encode a class of inductive tasks which
comprises of several similar tasks that can be enumerated from each other using an
inductive relationship. We require that these tasks have identical logical structure
but differ only in the low-level details of predicate values and/or environment
parameters. Next, we leverage their similar structures to design a generalizable
RL algorithm.

Formally, an inductive task is given by a tuple R = (R0, update_pred,
update_init) where R0 is a base task given as a temporal logical specification
over given predicates and update_pred and update_init define inductive updates
to the predicates of the specification and environment parameters, respectively,
to be applied to the base task repeatedly, so as to generate a family of tasks
R1,R2, . . . and such. Intuitively, one can think of an inductive task to represent a
complex task involving iterations as follows:

base_task = \task_0 // Encodes the base spec. and envt. conditions
current_task = base_task
repeat

next_task = update_pred(current_task), update_init(current_task)
current_task = next_task

For instance, in Figure 1 the robot is required to transport the source pile of
boxes to a target pile. This complex task can be decomposed into a series of
inductively related tasks: for the i-th instance, pick the topmost box from a
height of i in Source and place it at the top of the Target pile at height (h− i)
(where h is the total number of blocks). Here the 0-th task instance forms the
base task, and the update functions change the location of the topmost block
in the source and target piles. Observe that all task instances in an inductive
task have identical logical structure. They only differ in the instantiations of the
low-level predicates and environment variables.

Our goal is to leverage this inductive relationship between tasks to design
generalizable RL algorithms to learn policies for each task instance. Concretely,
the question we ask is: if trained on a few task instances of an inductive task,
can we obtain policies for the remaining tasks in a zero-shot manner?

Such generalization is difficult, in general. To solve this problem, we hypothe-
size that inductively-related task instances may have inductively-related policies.
Based on this hypothesis, we attempt to learn an inductive relationship between
the policies of simpler task instances to extract a policy generator : a higher-order
function that returns an adapted policy for a given inductive task instance. Fig-
ure 1(c) shows the trajectories of the pickup head with h = 8 blocks: we trained a
policy generator for the robot on picking and placing the first four blocks (shown

Inductive Generalization in Reinforcement Learning from Specifications 3

(a) Agent dy-
namics

(b) Inductive Task (c) Trajectories (d) Sample Complexity

Fig. 1: Tower Destacking: The task is to pick boxes from Source and stack it on
Target.

(a) Inductive Task (b) Trajectories

Fig. 2: Choice: visit either g1 or g2, then visit goal; task instances differ in initial
state distribution.

in blue); The robot could complete the whole task, with adapted policies from
the learnt policy generator for the unseen task instances, i.e. pick-n-place of the
bottom four blocks are shown in red. We see that the policy generator lends
significant adaptability to the robot to control its θ1 and θ2, as the trajectories of
the task instances are quite different.

However, our hypothesis may not always hold. It is possible that despite the
task being inductive, the policies are not immediately inductive. The motivating
example from Figure 2 illustrates this complication. Figure 2 illustrates an
inductive task in a 2D Cartesian plane: in a task instance, the agent is initially
located in one of the blue or red regions marked Rk. The goal is to visit the region
marked goal, after visiting one of the intermediate regions g1 or g2, while always
avoiding the obstacles shown in light blue. The task is inductive on the initial
position: the (k + 1)-th task can be defined in terms of the k-th task, by shifting
the initial location to the right by c units.

However, the policies are not inductive: there is a task Rk such that its policy
needs to route through g1 but the policy of task Rk+1 must route through g2
(eg. R4 and R5). Yet, we may be able to classify the task instances into multiple
groups, such that all tasks in each group is inductive (eg. {R0, . . . , R4} and {R5,

4 V. Subramanian et al.

. . . , R9}). Our policy generator learns such branches such that the task instances
on the same decision of the branch have inductive policies.

The benchmark environments we utilize in this work are particularly well-
suited for evaluating inductive generalization capabilities. Our tasks span a range
from simple reachability in 2D environments to complex robotic manipulation
scenarios, all unified by their inherent inductive structure. These environments
feature continuous state and action spaces, long-horizon planning requirements,
and varying degrees of physical constraints, which are challenging even for RL
without generalization.

We summarize our contributions: (a). We introduce a framework to learn in-
ductively generalizable policies for long-horizon tasks. This comprises formalizing
the notion of inductively-related tasks based on their logical specification and
describing the generalization problem as learning a higher-order policy generator
(Section 3). (b). We describe a procedure to learn a neural policy generator by
leveraging the inductive relationship between task instances (Section 4-Section 5).
(c). We perform an empirical evaluation of our inductive framework for generaliza-
tion in learning unseen tasks in complex, long-horizon specifications in continuous
environments, popular control environments, and robotic pick-n-place tasks. Our
evaluation demonstrates the promise of our inductive approach (Section 6) as we
are able to show that our approach outperforms mature policy-gradient state-of-
the-art generalizable RL algorithms in their ability to generalize to unseen tasks
and sample complexity.

2 Preliminaries

2.1 Markov Decision Process (MDP)

The environment in RL is given by a MDPM = (S,A, P, η) with continuous states
S ⊆ Rn, continuous actions A ⊆ Rm, transitions P (s, a, s′) = p(s′ | s, a) ∈ R≥0

(i.e., probability density of transitioning from state s to state s′ upon taking action
a), and initial states η : S → R≥0 (i.e., η(s) is the probability of the initial state
being s). A trajectory ζ ∈ Z is either an infinite sequence ζ = s0

a0−→ s1
a1−→ · · · or

a finite sequence ζ = s0
a0−→ · · · at−1−−−→ st where si ∈ S and ai ∈ A. A subtrajectory

of ζ is a subsequence ζℓ:k = sℓ
aℓ−→ · · · ak−1−−−→ sk. We let Zf denote the set of finite

trajectories. A (deterministic) policy π : Zf → A maps a finite trajectory to a
fixed action.

Crucially, in RL we assume that the transition probabilities of the MDP
is unknown. Hence, the MDP is accessed by sampling only. Concretely, given
a policy π, we can sample a trajectory by sampling an initial state s0 ∼ η(·),
and then iteratively taking the action ai = π(ζ0:i) and sampling a next state
si+1 ∼ p(· | si, ai).

Inductive Generalization in Reinforcement Learning from Specifications 5

2.2 Spectrl Specification Language and their Abstract Graphs

We express RL tasks using the logical specification language Spectrl [18]. Every
Spectrl specification can be expressed as an abstract graph which can be used to
design scalable compositional algorithms for RL from logical specifications [19].

A Spectrl specification is defined over a set of atomic predicates P0 that
ground environment states, where every p ∈ P0 is associated with a function
JpK : S → B = {true, false}; we say a state s satisfies p (denoted s |= p) if and
only if JpK(s) = true. For b ∈ P, the syntax of Spectrl is: ϕ ::= achieve b |
ϕ1 ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2. Each specification ϕ corresponds to a function
JϕK : Z → B, and we say ζ ∈ Z satisfies ϕ (denoted ζ |= ϕ) if and only if
JϕK(ζ) = true. Intuitively, ‘achieve ’ and ‘ ensuring ’ are reachability and safety
goals, respectively. ‘;’ and ‘or’ refer to sequencing and disjunction, respectively.
Letting ζ be a finite trajectory of length t, this function is defined by

ζ |= achieve b if ∃ i ≤ t, si |= b

ζ |= ϕ ensuring b if ζ |= ϕ and ∀ i ≤ t, si |= b

ζ |= ϕ1;ϕ2 if ∃ i < t, ζ0:i |= ϕ1 and ζi+1:t |= ϕ2

ζ |= ϕ1 or ϕ2 if ζ |= ϕ1 or ζ |= ϕ2.

Abstract Graph. An abstract graph of a Spectrl specification is a DAG-like
structure in which vertices represent sets of states (called subgoal regions) and
edges represent sets of MDP trajectories that can be used to transition from the
source to the target vertex without violating safety constraints.

Definition 1. An abstract graph G = (U,E, u0, F, β,Zsafe) is a directed acyclic
graph (DAG) with vertices U , (directed) edges E ⊆ U ×U , initial vertex u0 ∈ U ,
final vertices F ⊆ U , subgoal region map β : U → 2S such that for each u ∈ U ,
β(u) is a subgoal region, and safe trajectories Zsafe =

⋃
e∈E Ze

safe ∪
⋃

f∈F Z
f
safe,

where Ze
safe ⊆ Z denotes the safe trajectories for edge e ∈ E and Zf

safe ⊆ Z
denotes the safe trajectories for final vertex f ∈ F .

Intuitively, (U,E) is a DAG, and u0 and F define a graph reachability problem
for (U,E). Furthermore, β and Zsafe connect (U,E) back to the original MDP
M; in particular, for an edge e = u→ u′, Ze

safe is the set of safe trajectories in
M that can be used to transition from β(u) to β(u′).

A trajectory ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st inM satisfies the abstract graph
G (denoted ζ |= G) if there is a sequence of indices 0 = k0 ≤ k1 < · · · < kℓ ≤ t
and a path ρ = u0 → u1 → · · · → uℓ in G such that (a). uℓ ∈ F , (b). for all
z ∈ {0, . . . , ℓ}, we have skz

∈ β(uz), (c). for all z < ℓ, letting ez = uz → uz+1, we
have ζkz :kz+1

∈ Zez
safe, and (d). ζkℓ:t ∈ Z

uℓ

safe. The first two conditions state that
the trajectory should visit a sequence of subgoal regions corresponding to a path
from the initial vertex to some final vertex, and the last two conditions state that
the trajectory is composed of subtrajectories that are safe according to Zsafe.

The edge policy πe for an edge e = u→ u′ is one that safely transitions from
a state in β(u) to a state in β(u′). Given edge policies Π along with a path

6 V. Subramanian et al.

ρ = u0 → u1 → · · · → uk = u in G, the path policy πρ navigates from β(u0) to
β(u). In particular, πρ executes πuj→uj+1

(starting from j = 0) until reaching
β(uj+1), after which it increments j ← j + 1 (unless j = k). Learning an optimal
policy for Spectrl is reduced to learning an optimal path policy from the initial
to final vertex. This gives rise to a natural compositional learning approach that
first learns edge policies and then returns the path policy with the maximum
probability of reaching a final vertex [19].

3 Inductive Tasks

We begin by describing inductive tasks. These appear naturally in several scenarios,
as shown in Figures 1-2.

Notation. An RL task be given by the tuple (ϕ, η) where ϕ is a Spectrl
specification and η is the initial state distribution in the MDP. We say a trajectory
ζ = s0 . . . st satisfies an RL task (ϕ, η), denoted ζ |= (ϕ, η), if s0 ∼ η and ζ |= ϕ,
I.e., ζ begins in a state sampled from η and ζ satisfies ϕ.

An inductive task is a family of RL tasks that demonstrate the same overar-
ching structure but differ inductively in the low-level details. I.e., an inductive
task is given by a set of enumerable RL tasks such that the (i+ 1)-th task builds
on the i-th task by updating the predicates in the specification and/or the MDP
initial distribution. Formally,

Definition 2. Let P and D(S) denote the sets of predicates and state distribu-
tions in an MDP, respectively. Let ϕ(P) denote a Spectrl specification defined
over predicates P ⊆ P. Then, an inductive task is given by R = (R0, update_pred,
update_init) where RL task R0 = (ϕ(P0), η0) is the base task, update_pred :
P 7→ P is the predicate update function, and update_init : D(S) 7→ D(S)
is the initial distribution update function. The enumerable task instances in
R are given by R0 = (ϕ(P0), η0) and Ri+1 = (ϕ(Pi+1), ηi+1) for i > 0 where
Pi+1 = {update_pred(p) | p ∈ Pi} and ηi+1(s) = ηi(update_init(s)).

We denote the i-th task instance Ri by (ϕi, ηi) and refer to task instances Ri and
Ri+1 as adjacent.

Motivating Example #1. For Figure 1, the inductive task is formalized as: For
j ∈ {0, . . . , h}, let the predicates source_j and target_j denote the location of
the block at height j in the source and target tower, respectively; let η_source_j
be a distribution around the block at height j in the source tower. The base task
R0 is given by

((achieve (target_0)); (achieve (source_(h− 1))), η_source_h).

The predicate update function updates predicates source_j and target_j to
source_(j− 1) and target_(j+ 1), resp. The initial distribution update function
updates η_source_j to η_source_(j− 1). Then, the j-th task instance

Rj = ((achieve (target_j)); (achieve (source_(h− j− 1))), η_source_h− j).

Inductive Generalization in Reinforcement Learning from Specifications 7

Motivating Example #2. Choice tasks from Figure 2 is an inductive task that
updates the initial state distribution, by shifting to the right by constant units
for adjacent task instances. They are stack of l levels, where each task Rk requires
reaching a goal goali while avoiding the obstacle obs, either through the (sub)goal
gi1 or gi2,

(achieve (reach (gi1) or reach (gi2));

achieve (reach (goali)))
l

ensuring (avoid (obs))

where, 1 ≤ i ≤ l. We use the superscript l to indicate that the enclosed specifi-
cation is repeated l times. Figure 2a illustrates a task with l = 1 and Figure 9c
illustrates a task with l = 2. The update functions for the initial distribution is
defined as update_init(η(s)) = η(s+ (c1, 0)), where c1 = 1 unit.

Lemma 1. For an inductive task R, let Gi be the abstract graph of the specifica-
tion of the i-th task instance Ri. Then, all the Gis share a common DAG structure
with the same initial and final vertices.

Proof. The proof follows from the construction of abstract graphs in [19].

This lemma asserts that all task instances within an inductive task have
identical logical structures. They differ only in the low-level details of the abstract
graph.

4 Generalizable RL for Inductive Tasks.

We define the problem of learning generalizable policies for an inductive task
by learning a policy generator. The policy generator for an inductive task R is a
function G : R→ Π, where Π is the set of all policies in the MDP. E.g., the policy
generator for tower-destacking from Figure 1 maps the j-th task instance to the
policy that displaces the source’s (h− j)-th block to the target’s j-th block, then
returns to the source’s (h− j− 1)-th block by manipulating the motor controls
θ1, θ2. Note these policies are different for each task instance Rj .

Definition 3 (Learning a Policy Generator). Given an MDP with unknown
transitions, an inductive task R and a set of a training task instances Train s.t.
the base task R0 ∈ Train, the problem of generalizable RL is to learn a policy
generator G∗ : R→ Π such that

G∗ ∈ argmax
G

1

|Train|
·

∑
Rj∈Train

Pr
s0∼ηjζ∼Dπj,s0

[ζ |= ϕj , ηj] where the policy πj = G∗(Rj)

Then, πj = G∗(Rj) for all j ∈ N.

I.e., the policy generator optimizes the policies for all training task instances
simultaneously, in an attempt to generalize, so as to also derive policies for all
task instances not present in Train.

8 V. Subramanian et al.

4.1 Learning Policy Generator

We present an overview of our approach to learning a policy generator. Learning
a higher-order function such as the policy generator is difficult. To make learning
a policy generator feasible, we (a) assume inductive relations between policies
of task instances that are inductively related, (b) leverage similarity between
the structure of inductive tasks (Lemma 1), and (c) leverage compositionality of
Spectrl specifications [19].

We leverage the inductive nature of the inductive tasks to learn the policy
generator. We base our work on the following hypothesis: As two adjacent task
instances are related by an inductive relation, there may also exist an inductive
relation over the corresponding policies of these tasks. However, this may not hold
for certain tasks (eg. Figure 2). We attempt to overcome this with compositonality :
instead of learning an inductive policy for the whole task, we divide the task
into subtasks via the abstract graph, where each edge in the abstract graph
corresponds to a subtask.

[19] ensures that a policy for a task instance Ri is given by a path policy in
its abstract graph Gi. Lemma 1 informs that the DAG structure of all graphs Gi
are identical, say G. Hence, the policy generator can be viewed as a map from
task instances to path policies from initial to final vertex in the same graph G
(with appropriate instantiation for edge policies in each task instance). Hence,
we learn an inductive relation between the corresponding edge policies of the
abstract graphs. We formulate the problem to learn such inductive relations in
Section 4.1.

Last but not least, the edge policies obtained from the inductive relation will
result in multiple path policies for each task instance. We are interested in the
policy generator to choose the optimal path policy for each task instance. We
ensure this by incorporating guards along vertices in the common DAG G that
route each task instance along the optimal path in the DAG (Section 4.1).

Learning an Inductive Relation on Edges. This section defines an inductive
relation between corresponding edges of the abstract graphs of an inductive task
and formulates our approach to learn neural inductive relations.

Let e = u→ v be an edge in the common DAG G of an inductive task. Let
πi denote the edge policy for the i-th task on the edge e in Gi.

Then, an inductive relation between these policies is a function Ω : Π → Π
s.t. πi+1 = Ω(πi). Thus, given the edge policy π0 in the base task, the inductive
relation Ω can be inductively “unrolled" to construct the edge policy for any
instance Ri of an inductive task R. That is,

πi = Ω(πi−1) = Ω(Ω(πi−2)) = · · · = Ωi(π0)

where Ωi composes Ω with itself i times.
As learning the inductive relation Ω is difficult, we resort to polynomial

approximation: we approximate the inductive relation Ω over the policies as an
m-degree polynomial. Polynomial approximations are interesting as any function

Inductive Generalization in Reinforcement Learning from Specifications 9

can be approximated as a polynomial up to an arbitrary precision using the
Taylor expansion. This reduces learning Ω on edges to inferring the κ-coefficients
(κm, · · · , κ0) of an m-degree κ-polynomial. Details below:

Neural Policies. If the policy for the i-th task instance πi ∈ Π is implemented
by a neural network with parameter vector [πi], then the m-degree polynomial
inductive relation is given by

[πi+1] = κm ⊙ [πi]
m + κm−1 ⊙ [πi]

m−1 + · · ·+ κ0 (1)

where, the polynomial coefficients, κi, are vectors with the same dimension as
[πi]; the ⊙ operator is the Hadamard product (element-wise multiplication) of
the coefficient vectors κi with the parameter vector (weights and biases) of the
policy network πi, and ‘+’ is element-wise vector addition. Then as described
earlier, with π0 as the base policy with parameters [π0], the inductive relation
Ω can be inductively “unrolled" to construct the policy network for πi. Hence,
in this case, we attempt to learn an inductive relation between the parameter
vectors of the policy (neural) network of task instances.

Learning the Policy Generator. Next, we describe a policy generator on the
common DAG G between all task instances in R. Given the inductive relation and
base policy for every edge in G, our goal is to describe a mapping for task instances
in R to a path policy in G, as per the edge policies inferred by Equation 1.

Every path from the initial to the final vertex corresponds to a path policy
for the i-th task. Elaborating further, for degree m, let κe = (κe

m, · · · , κe
0) denote

the κ-coefficients on the edge e ∈ G. Let ρ = e1 · · · ek be a path from the initial to
a final vertex. Then, a policy for a task Ri is given by the path policy πe1

i · · ·π
ek
i

where [π
ej
i] = Ωi[π

ej
0]. This requires selection of a path policy for each Ri.

We assign guards at vertices with multiple outgoing edges in G such that each
vertex routes task instances to a unique outgoing edge, ensuring a unique path
for every task instance from initial to a final vertex. Formally, a guard in a vertex
maps task instances to the outgoing edges from the vertex.

Then, the policy generator for an abstract graph executes as follows: Given
a task instance Ri, it uses the guard conditions to determine its unique path
from the initial to a final vertex. It returns the path policy along this path as
described above. For example, Figure 2a has two possible paths: via g1 or g2. We
learn a guard, (i ≤ 4), that resolves this branching decision at the init node: a
task like R2 would select pass via g1 while R6 will via g2.

Hence, learning a policy generator for a DAG entails learning the (m + 1)
κ-coefficients of the m-degree κ-polynomial and a base policy for every edge,
along with guard conditions for all vertices with multiple outgoing edges.

5 Algorithm

Algorithm 1 (GenRL) takes as input an inductive task R, the degree m of the κ-
polynomial, and a finite set of training task instances Train (we assume 0 ∈ Train)

10 V. Subramanian et al.

and outputs a policy generator for R. As described above, this entails learning
a base policy and the (m+ 1) κ-coefficients for edges and guard conditions for
vertices in the common DAG G (with initial vertex u0) of the inductive task.

GenRL operates in two phases: (1) learn κ-coefficients and base policy for all
edges, and (2) learn guard conditions at vertices with multiple outgoing edges.

In the first phase, GenRL traverses the vertices in G in topological order. While
processing a vertex u, we record the success probability of the best probability
path from the initial vertex u0 to u for the i-th task instance in P (u, i). We also
record bestIn(u, i) to be the set of incoming vertices to u that are along a best
probability path from u0 to u for the task instance i ∈ Train. Then,

P (u, i) =

{
1 if u = u0

max {P (w, i) · pw→u
i | w → u ∈ InEdges(u)} if u ̸= u0

bestIn(u, i) =

{
∅ if u = u0

argmaxw {P (w, i) · pw→u
i | w → u ∈ InEdges(u)} if u ̸= u0

where pw→u
i is the estimated success probability of edge policy of i-th task

instance on edge w → u.
Next, we induce a state distribution ηui on vertex u for all task instances

i ∈ Train. ηu0
i is given by the initial distribution of the task instance Ri. For all

other vertices u ̸= u0, the state distributions are induced along the best probability
path from u0 to u. To this end, ηui is induced from states in bestIn(u, i) using the
leaned edge policies along these incoming edges.

Finally, for all outgoing edges e = u→ v, we learn the base policy and (m+1)
κ-coefficients. The base policy πe

0 is learned as a neural-network policy using
standard RL such that πe

0 maximizes the satisfaction of the edge e for the 0-th
task instance. I.e., the rewards are designed to encourage πe

0 to safely transition
from an MDP state in u to an MDP state in v for the 0-th task instance.

The κ-coefficients are learned using an adaptation of the ARS (Augmented
Random Search) (see Appendix B.1). The κ-coefficients capture an inductive
relation between the parameters of the policy networks of adjacent task instances;
[πe

i] is the parameter vector for the policy network corresponding to the i-th task
instance. Let πe

i be obtained by unrolling the κ-polynomial on the base policy
parameters for all i ∈ Train. Taking rewards of πe

i to be based on satisfaction of
the edge for the i-th task instance (as done for the base policy), κ-polynomials
are trained to optimize the softmin of the rewards over all training task instances.

The second phase learns the guard conditions (see Appendix B): In addition
to ensuring the uniqueness of the path, we require that the guards choose an
edge such that the resulting path policy has a high probability of satisfaction.
To this end, for each edge e, we create a set Se of task instances such that the
e appears on a best probability path to a final vertex for those task instances,
using backward DAG traversal and bestIn. Finally, the guard on a vertex u is
learned as a multi-task classifier with (a) outgoing edges as the class labels, (b)
task instance indices as features, and (c) the dataset consists of data points (i, e)
s.t. i ∈ Se for all outgoing edges e from u.

Inductive Generalization in Reinforcement Learning from Specifications 11

6 Empirical Evaluation

We evaluate GenRL3 across diverse environments, demonstrating superior gener-
alization and sample efficiency compared to state-of-the-art approaches. Through
experiments spanning navigation, long-horizon tasks, complex decision-making,
and control benchmarks, we show that explicitly modeling inductive relationships
between tasks provides a fundamentally more effective approach to generalization.

6.1 Experimental Setup

Evaluation Methodology. To rigorously evaluate generalization capabilities, each
experiment involves training on a fixed set of task instances (Train) and testing on
unseen task instances (Unseen) from the same inductive task family. We estimate
the probability of success for each task based on 1000 rollouts. A policy πi is
considered successful on task instance Ri : (ϕi, ηi) if the rollouts ζ satisfy the
specification with probability above δ, specifically Prζ∼Dπi

[ζ |= ϕi, ηi] > δ, where
we set δ = 0.9. All reported results represent the median of five independent runs
with different random seeds. For fair comparison, all methods are evaluated on
identical Train and Unseen sets.

In all experiments, we train using a 1-degree κ-polynomial approximation
of the inductive relationship (see Appendix G for analysis of polynomial degree
choice). All experiments run on a cluster with Intel Xeon Gold 6226 CPUs (2.7
GHz, 24 cores per node) and 192GB RAM per node.

6.2 Baselines and Comparisons

Baselines are state-of-the-art generalizable RL approaches and GenRL ablations:

– Generalizable RL algorithms across three categories:
• Inductive Generalization algorithms. PSMP [16] leverages inductive struc-

tures between tasks but operates as a planning approach with known transi-
tion probabilities;

• Meta-Learning algorithms. MAML-Reinforce [11] and VariBAD-A2C [42],
which enable rapid adaptation through task-specific representations;
• Goal-Conditioned algorithms. C-Learning [29] and HER-DDPG [4] enable

generalization by incorporating goal-states directly into the policy input.
– Ablations of GenRL to analyze component contributions:
• Augmented Random Search (ARS) [28]: This ablation uses the standard

ARS algorithm, learning a single policy for all tasks in Train. Unlike GenRL,
which trains an inductive policy generator that adapts to different tasks,
ARS relies on a single reward signal rather than aggregating multiple task-
specific rewards.

3 Complete codebase of GenRL and the experimental setup is available at
https://anonymous.4open.science/r/GenRL_Zenith-7EEB/; details in Appendix A

https://anonymous.4open.science/r/GenRL_Zenith-7EEB/

12 V. Subramanian et al.

(a) GenRL

(b) PSMP

Fig. 3: Moving initial
and goal distributions

(a) GenRL

(b) ARS+RA

Fig. 4: Moving initial
distribution, stationary
goal

(a) GenRL

(b) ARS+RA

Fig. 5: Moving initial
distribution, stationary
goal, with obstacle

• ARS + Reward Aggregation (ARS+RA): This ablation incorporates our
reward aggregation mechanism (softmin function across tasks) but still learns
a single policy instead of generating task-specific policies.

• ARS + Goal Conditioning (ARS+GC): This ablation extends ARS+RA
by providing the task index as additional input to the policy, enabling
differentiation between tasks while maintaining a single policy.

6.3 Results and Analysis

Simple Reachability Tasks We begin with simple reachability tasks in a 2D
Cartesian plane. The inductive tasks (Figures 3–5) require navigating from initial
positions (blue and red dots) to target positions (grey boxes) while avoiding
obstacles when present. Task instances are generated by shifting either only the
initial position (Figures 4, 5) or both initial and goal positions (Figure 3).

The figures show representative trajectories for training tasks (blue) and
unseen tasks (red). Despite the apparent simplicity, most baselines struggle with
generalization. While PSMP performs adequately when task variations follow
simple shifts (Figure 3), it fails with more complex adaptations (Figures 4, 5).
ARS+RA shows stronger performance in controlled variations but lacks consistent
generalization across broader conditions.

In contrast, GenRL demonstrates substantially superior generalization by
producing custom trajectories adapted to each specific task instance rather
than applying nearly identical paths across all variations. For the simplest
case (Figure 3), GenRL successfully completes up to 99 unseen tasks after 400

Inductive Generalization in Reinforcement Learning from Specifications 13

(a) N-Reachability without
obstacles (Illustration)

(b) N-Reachability without obstacles (results)

(c) N-Reachability with ob-
stacles (Illustration)

(d) N-Reachability with obstacles (results)

Fig. 6: N -Reachability Tasks: (a) and (c) illustrate the task environments without
and with obstacles, respectively. (b) and (d) compare the number of successful
unseen tasks for these environments.

iterations—a remarkable 1650% generalization rate relative to the training set.
Even with obstacles (Figure 5), GenRL maintains impressive generalization with
22 successful unseen tasks (367% generalization rate). Successful trajectories
(solid lines with •) vastly outnumber failures (dotted lines with ×) for GenRL even
on unseen tasks, confirming its robust adaptation capabilities. More detailed
results can be found in Appendix D.2.

Long-Horizon Tasks To evaluate scalability to longer horizons, we designed
two classes of long-horizon tasks:

N-Reachability Tasks. These tasks (Figures 6a and 6c) extend simple reachability
by requiring the agent to visit N intermediate points sequentially. Both the initial
distribution and goal positions shift inductively across task instances.

Figures 6b and 6d show generalization performance as N increases. GenRL main-
tains consistently high performance across all horizon lengths, successfully gener-
alizing to 5 unseen tasks even in the most complex scenarios (N = 5)—an 83%

14 V. Subramanian et al.

(a) (b) (c) (d)

Fig. 7: Tower-destacking benchmarks on Reacher Environment: Task illustrations,
trajectories, and learning curves: (a) Pick and Drop: Same side, (b) Pick and
Drop: Opposite side, (c) Pick and Vertical Stack: Opposite side, (d) Pick and
Horizontal Stack: Same side. Learning Curve: x-axis denotes the number of
samples (steps) and y-axis denotes the average of the estimated probability of
success of all tasks in Train. Results are averaged over 5 runs with the cloud
indicating the minimum and maximum.

generalization rate. While VariBAD achieves competitive results for N = 1, its
performance deteriorates dramatically as horizon length increases, highlighting
its difficulty with longer-horizon tasks. Other algorithms show poor generalization
across the board, with performance declining rapidly as N increases.

Tower-Destacking. We evaluated several variations of a tower-destacking task
using a robotic arm in the Reacher environment (Figures 1 and 7). The source
tower contains eight blocks, with algorithms trained on the top four blocks and
tested on the remaining four.

Figure 8a shows that GenRL achieves generalization performance comparable
to sophisticated methods like VariBAD and HER. However, the learning curves in
Figure 7 reveal a critical advantage: GenRL reaches optimal performance with an
order of magnitude fewer samples than these alternatives. While GenRL converges
after approximately 104 environment steps, VariBAD requires 105 steps, and
HER-DDPG needs over 106 steps to achieve similar performance. This remark-
able sample efficiency demonstrates the power of explicitly modeling inductive
relationships rather than relying on implicit learning through neural networks.
Detailed results can be found in Appendices D.3, D.4, and E.

Complex Decision-Making Tasks Some of the most challenging scenarios
involve optimal decision-making where the agent must choose between alternative
paths based on task parameters. We evaluated GenRL on three "choice" tasks

Inductive Generalization in Reinforcement Learning from Specifications 15

(a) Reacher Benchmarks (b) Classical control benchmarks

Fig. 8: Comparison of the number of successful Unseen task instances. (a) Perfor-
mance on Reacher benchmarks. (b) Performance on classical Control benchmarks.

Benchmark Successful Train Successful Unseen Learned Guard Predicate
Figure 2 All 7 (i ≤ 4)

Figure 9a All 5 (i ≤ 4)

Figure 9c All 5 (i ≤ 4), (i ≤ 4)

Table 1: Choice benchmarks: No. of successful unseen tasks for the Car2D Choice
benchmarks. Successful Train indicates if all training tasks were completed
successfully (|Train| = 6), while Successful Unseen reports the number of
successful instances on unseen tasks. Learned Guard Predicate represents the
decision index where the agent must choose the optimal goal. For example, when
i ≤ 4, for task Ri where i ≤ 4, goal g1 is chosen; otherwise, goal g2 is chosen. In
more complex benchmarks (e.g., Figure 9c with 2 levels), multiple predicates
may emerge.

of increasing complexity: (a). Moving initial point with fixed goal (Figure 2)
(b). Moving initial point and moving goal (Figure 9a) (c). Two-level choice with
moving initial point and moving goal (Figure 9c). These tasks require the agent to
select between alternative subgoals (g1 or g2) based on the specific task instance.
GenRL’s unique ability to learn guard conditions enables optimal branching
decisions. For example, in Figure 2, GenRL learns the guard predicate (i ≤ 4),
directing tasks with index i ≤ 4 through the first subgoal and tasks with i > 4
through the second subgoal.

Table 1 shows that GenRL successfully generalizes to 5-7 unseen tasks across
these choice benchmarks, achieving up to 117% generalization on the most basic
choice task (Figure 2) and 84% generalization on more complex choice variants.
Remarkably, no other algorithm demonstrates any meaningful generalization on
these tasks, highlighting GenRL’s distinctive capability to model complex decision
boundaries. Detailed descriptions can be found in Appendix D.5.

Classical Control Benchmarks To verify GenRL’s applicability beyond naviga-
tion tasks, we evaluated it on classic OpenAI Gym control benchmarks: Pendulum,

16 V. Subramanian et al.

(a) Choice with moving goal -
Illustration.

(b) Choice with moving goal -
Trajectory.

(c) Two levels of choice with
moving goal - Illustration.

(d) Two levels of choice with
moving goal - Trajectory.

Fig. 9: Choice benchmarks task illustration and corresponding trajectories: (a)
and (b) illustrate the benchmark, while (c) and (d) show the agent’s trajectory
in the respective benchmarks.

Acrobot, and Cartpole. These environments feature inductive variations in physi-
cal parameters (mass, length) rather than task specifications.

Figure 8b shows that GenRL achieves superior generalization across all three
environments, with particularly impressive results in Pendulum (20 successful
unseen tasks, 333% generalization) and Cartpole (14 successful unseen tasks, 233%
generalization). Even in the challenging Acrobot environment, GenRL successfully
generalizes to 10 unseen tasks (167% generalization) with sufficient training
iterations, while competing methods plateau at much lower levels of generalization.
This demonstrates that GenRL can effectively model inductive relationships
in physical parameters and transfer knowledge between related control tasks.
Detailed descriptions are available in Appendix F.

6.4 Key Findings and Analysis

Superior Performance and Stability Across Complexity Scales. GenRL consistently
outperforms all baselines across diverse specifications, particularly as task com-
plexity increases. While baseline methods exhibit diminishing returns—evident in
N-Reachability tasks where VariBAD’s performance drops dramatically from N=1

Inductive Generalization in Reinforcement Learning from Specifications 17

to N=5, and in choice tasks where baselines fail to generalize at all—GenRL main-
tains stable performance even for longer horizons and complex branching tasks.
This stability, coupled with remarkable sample efficiency (requiring only 104 en-
vironment steps compared to 105-106 for policy gradient methods), demonstrates
that explicitly modeling inductive relationships is fundamentally more effective
than implicit meta-learning or goal-conditioning approaches. GenRL achieves
this despite using the simpler Augmented Random Search algorithm without
gradients, yet matches or exceeds the performance of sophisticated methods like
VariBAD and HER.

This dramatic efficiency advantage demonstrates the power of leveraging
logical specifications and inductive structure. For tasks with natural inductive
relationships, explicitly modeling these relationships proves far more effective than
attempting to learn them implicitly through meta-learning or policy gradients.

Policy Generator is key to GenRL’s superior performance. Our ablation studies
with ARS, ARS+RA, and ARS+GC consistently show these variants underper-
forming compared to the full GenRL framework. The base ARS algorithm has no
mechanism to generalize over tasks, resulting in poor performance. Although in-
corporating Reward Aggregation (ARS+RA) and Goal Conditioning (ARS+GC)
provides marginal improvements, these variants still fall far short of GenRL’s
capabilities.

When ARS leverages GenRL’s inductive policy generator framework, it not
only overcomes its high sample complexity but significantly enhances performance.
This integration enables GenRL to outperform even sophisticated policy gradient
methods, demonstrating the substantial advantages of our approach. GenRL’s
ability to efficiently generate adapted policies for diverse task instances—rather
than learning or fine-tuning individual policies—underlies its exceptional sample
efficiency and performance.

7 Related Work

Specification-Guided RL. Recent years have seen an emergence of RL from logical
specifications [1, 2, 5, 7, 9, 12–15, 17, 19, 20, 25, 26, 33, 38, 40]. Here, the task is
expressed using high-level logical specifications rather than as low-level rewards.
Logic specifications have received traction due to their ease in expressing complex
long-horizon tasks and ability to efficiently scale learning. Prior works have focused
primarily on scalability to long-horizon tasks and theoretical guarantees. Ours is
the first work to leverage logical specifications specifically for generalization.

Zero-shot generalization. Zero-shot generalization relates to multi-task learning
and skill transfer, distilling transferable skills from seen tasks to generalize to
unseen ones [22, 30–32]. With logical specifications, existing approaches learn
policies for sub-specifications and generalize to their combinations [23, 24, 27,
35, 37]. Our problem is orthogonal: in prior work, the predicate set remains
constant while only specifications change. In our setting, both predicates and

18 V. Subramanian et al.

environment distributions vary between training and unseen tasks. [21] considers
changing distributions but with fixed predicates. Reward-based generalizable
RL has been explored in [43],[34]. In meta-learning, algorithms like MAML[11]
and VariBAD[42] enable rapid adaptation to new tasks by adjusting task-specific
parameters and representations. Goal-conditioned algorithms like C-Learning[29]
and HER[4] contribute by conditioning policies on desired outcomes, enhancing
adaptation to new goals without additional training.

Inductive/Programmatic Approaches to Generalization. Closest to our work is
PSMP [16], which learns inductive policies in the planning setting (known MDP)
rather than RL (unknown MDP). Despite this advantage, PSMP cannot adapt
to different task instances, as it learns a single policy for all instances. Our
approach learns a higher-order policy generator that produces specialized policies
for each task instance. Programmatic/logic-based policy representations generally
demonstrate better generalizability than neural network policies [6, 8, 36, 41].
Non-programmatic policy sketches have also been explored [3]. Our work differs
by exploiting the natural inductiveness in task specifications to extract inductive
relations for policies and learn a higher-order policy generator.

8 Concluding remarks

While current advances in generalizable RL have focused primarily on making
agents more adaptable through sophisticated architectures and training pro-
cedures, our work suggests an alternative path forward - one that leverages
the inherent structure in specifications to enable systematic generalization. By
making this structure explicit through formal specifications and inductive re-
lationships, we not only achieve better generalization but also achieve better
sample complexity by an order of magnitude. In doing so, we outperform several
mature policy-gradient based state-of-the-art tools for generalization.

Currently, GenRL performs effectively in environments with lower-dimensional
action and state spaces. However, its scalability to more complex environments
with higher-dimensional spaces remains a challenge. Future work will focus on
enhancing the algorithm’s capability to handle these more complex scenarios.
Additionally, while defining tasks via logical specifications is generally easier
than specifying rewards, it still requires considerable effort to design these spec-
ifications accurately. To address these, future research will aim at developing
more streamlined and user-friendly methods for task specification to make the
specification process as lightweight as possible. This will help broaden the appli-
cability of GenRL or any specification-guided learning to a wider range of tasks
and environments. Even though the logic and formulation behind our research
are principally motivated by a foundational hypothesis and empirically validated
for its performance and results, we still not have investigated the possibilities of
providing theoretical guarantees and this is also something our future work will
focus on.

Bibliography

[1] Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for
robust satisfaction of signal temporal logic specifications. In: Conference on
Decision and Control (CDC). pp. 6565–6570. IEEE (2016)

[2] Alur, R., Bansal, S., Bastani, O., Jothimurugan, K.: A framework for trans-
forming specifications in reinforcement learning. In: Principles of Systems
Design: Essays Dedicated to Thomas A. Henzinger on the Occasion of His
60th Birthday, pp. 604–624. Springer (2022)

[3] Andreas, J., Klein, D., Levine, S.: Modular multitask reinforcement learning
with policy sketches. In: International conference on machine learning. pp.
166–175. PMLR (2017)

[4] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder,
P., McGrew, B., Tobin, J., Abbeel, P., Zaremba, W.: Hindsight experience
replay. Advances in Neural Information Processing Systems 30 (2017)

[5] Bansal, S.: Specification-guided reinforcement learning. In: International
Static Analysis Symposium. pp. 3–9. Springer (2022)

[6] Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via
policy extraction. Advances in neural information processing systems 31
(2018)

[7] Brafman, R., De Giacomo, G., Patrizi, F.: LTLf/LDLf non-markovian re-
wards. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 32 (2018)

[8] Cao, Y., Li, Z., Yang, T., Zhang, H., Zheng, Y., Li, Y., Hao, J., Liu,
Y.: GALOIS: boosting deep reinforcement learning via generalizable logic
synthesis. Advances in Neural Information Processing Systems 35, 19930–
19943 (2022)

[9] De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restrain-
ing bolts: Reinforcement learning with LTLf/LDLf restraining specifications.
In: Proceedings of the International Conference on Automated Planning and
Scheduling. vol. 29, pp. 128–136 (2019)

[10] Dohmen, T., Perez, M., Somenzi, F., Trivedi, A.: Regular reinforcement
learning. In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided Verification.
pp. 184–208. Springer Nature Switzerland, Cham (2024)

[11] Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adap-
tation of deep networks. In: International Conference on Machine Learning.
pp. 1126–1135. PMLR (2017)

[12] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.:
Omega-Regular Objectives in Model-Free Reinforcement Learning. In: Tools
and Algorithms for the Construction and Analysis of Systems. pp. 395–412
(2019)

[13] Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.:
Reinforcement learning for temporal logic control synthesis with probabilistic

20 V. Subramanian et al.

satisfaction guarantees. In: Conference on Decision and Control (CDC). pp.
5338–5343 (2019)

[14] Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforcement
learning. arXiv preprint arXiv:1801.08099 (2018)

[15] Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning.
In: International Conference on Machine Learning. pp. 2107–2116. PMLR
(2018)

[16] Inala, J.P., Bastani, O., Tavares, Z., Solar-Lezama, A.: Synthesizing Pro-
grammatic Policies that Inductively Generalize. In: Internation Conference
on Learning Representations (2020)

[17] Jiang, Y., Bharadwaj, S., Wu, B., Shah, R., Topcu, U., Stone, P.: Temporal-
Logic-Based Reward Shaping for Continuing Reinforcement Learning Tasks.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35,
pp. 7995–8003 (2021)

[18] Jothimurugan, K., Alur, R., Bastani, O.: A composable specification language
for reinforcement learning tasks. Advances in Neural Information Processing
Systems 32 (2019)

[19] Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information
Processing Systems 34, 10026–10039 (2021)

[20] Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Specification-guided
learning of Nash equilibria with high social welfare. In: International Con-
ference on Computer Aided Verification. pp. 343–363. Springer (2022)

[21] Jothimurugan, K., Hsu, S., Bastani, O., Alur, R.: Robust Subtask Learning
for Compositional Generalization. In: International Conference on Machine
Learning (2023)

[22] Kirk, R., Zhang, A., Grefenstette, E., Rocktäschel, T.: A survey of zero-
shot generalisation in deep reinforcement learning. Journal of Artificial
Intelligence Research 76, 201–264 (2023)

[23] Kuo, Y.L., Katz, B., Barbu, A.: Encoding formulas as deep networks: Re-
inforcement learning for zero-shot execution of LTL formulas. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 5604–5610. IEEE (2020)

[24] León, B.G., Shanahan, M., Belardinelli, F.: Systematic generalisation
through task temporal logic and deep reinforcement learning. arXiv preprint
arXiv:2006.08767 (2020)

[25] Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic
rewards. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 3834–3839. IEEE (2017)

[26] Littman, M.L., Topcu, U., Fu, J., Isbell, C., Wen, M., MacGlashan, J.:
Environment-Independent Task Specifications via GLTL. arXiv preprint
arXiv:1704.04341 (2017)

[27] Liu, J., Shah, A., Rosen, E., Jia, M., Konidaris, G., Tellex, S.: Skill Transfer
for Temporal Task Specification. In: CoRL 2023 Workshop on Learning
Effective Abstractions for Planning (LEAP) (2023)

Inductive Generalization in Reinforcement Learning from Specifications 21

[28] Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies
is competitive for reinforcement learning. In: Advances in Neural Information
Processing Systems. pp. 1805–1814 (2018)

[29] Naderian, P., Loaiza-Ganem, G., Braviner, H.J., Caterini, A.L., Cresswell,
J.C., Li, T., Garg, A.: C-learning: Horizon-aware cumulative accessibility
estimation. International Conference on Learning Representations (2021)

[30] Oh, J., Singh, S., Lee, H., Kohli, P.: Zero-shot task generalization with multi-
task deep reinforcement learning. In: International Conference on Machine
Learning. pp. 2661–2670. PMLR (2017)

[31] Sodhani, S., Zhang, A., Pineau, J.: Multi-task reinforcement learning with
context-based representations. In: International Conference on Machine
Learning. pp. 9767–9779. PMLR (2021)

[32] Sohn, S., Oh, J., Lee, H.: Hierarchical reinforcement learning for zero-shot
generalization with subtask dependencies. Advances in neural information
processing systems 31 (2018)

[33] Svoboda, J., Bansal, S., Chatterjee, K.: Reinforcement learning from reacha-
bility specifications: Pac guarantees with expected conditional distance. In:
Forty-first International Conference on Machine Learning (2024)

[34] Taiga, A.A., Agarwal, R., Farebrother, J., Courville, A., Bellemare, M.G.:
Investigating Multi-task Pretraining and Generalization in Reinforcement
Learning. In: The Eleventh International Conference on Learning Represen-
tations (2023)

[35] Vaezipoor, P., Li, A.C., Icarte, R.A.T., Mcilraith, S.A.: LTL2ACTION: Gen-
eralizing LTL Instructions for Multi-task RL. In: International Conference
on Machine Learning. pp. 10497–10508. PMLR (2021)

[36] Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically
interpretable reinforcement learning. In: International Conference on Machine
Learning. pp. 5045–5054. PMLR (2018)

[37] Xu, D., Fekri, F.: Generalizing LTL Instructions via Future Dependent
Options. arXiv preprint arXiv:2212.04576 (2022)

[38] Xu, Z., Topcu, U.: Transfer of temporal logic formulas in reinforcement
learning. In: International Joint Conference on Artificial Intelligence. pp.
4010–4018 (7 2019)

[39] Yang, C., Littman, M., Carbin, M.: On the (in) tractability of reinforcement
learning for ltl objectives. arXiv preprint arXiv:2111.12679 (2021)

[40] Yuan, L.Z., Hasanbeig, M., Abate, A., Kroening, D.: Modular deep re-
inforcement learning with temporal logic specifications. arXiv preprint
arXiv:1909.11591 (2019)

[41] Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis frame-
work for verifiable reinforcement learning. In: Proceedings of the 40th ACM
SIGPLAN conference on programming language design and implementation.
pp. 686–701 (2019)

[42] Zintgraf, L., Schulze, S., Lu, C., Feng, L., Igl, M., Shiarlis, K., Gal, Y.,
Hofmann, K., Whiteson, S.: Varibad: Variational bayes-adaptive deep rl via
meta-learning. Journal of Machine Learning Research 22(289), 1–39 (2021)

[43] Zisselman, E., Lavie, I., Soudry, D., Tamar, A.: Explore to Generalize in
Zero-Shot RL. Advances in Neural Information Processing Systems 36 (2024)

22 V. Subramanian et al.

Appendix

A Supplemental Material

The complete source code of GenRL tool along with our experimental setup
has been made available at https://anonymous.4open.science/r/GenRL_Zenith-
7EEB/. We provide comprehensive training and testing code for our experiments.
In addition to the training and testing scripts, we include pre-trained models that
allow users to generate rollouts and visualize the resulting trajectories. We have
provided a requirements.txt within the artifact with detailed instructions.

To get started, please install the required dependencies:
pip install -r requirements.txt.

Training new models. To train the models, use the following command with the
appropriate parameters:
python -u -m spectrl.examples.car2d_dirl -n 0 -d car2d_k2/{name} -s
{s} -h {h} -b ’j2_’.

– For Towerstack with robotic arm experiments, set s from 0 to 5 and h to 8.
– For choice experiments, set s to 6 or 7 and h to 10.
– For classical control experiments, set s from 8 to 10 and h to 10.

Running the training script also executes the testing script. The codebase is set
to test for only n number of unseen tasks. To test for a different number of task in-
stances, change the test_rounds variable in the spectrl/hierarchy/reachability.py
file. Replace {any_name_of_your_choice}, {s}, and {h} with your specific val-
ues. For example, to run a tower-stack with a robotic arm experiment with s set
to 2 and h set to 8, use:
python -u -m spectrl.examples.car2d_dirl -n 0 -d car2d_k2/experiment1
-s 2 -h 8 -b ’j2_’.

Only visualizing rollouts from pre-trained models. If you only want to visual-
ize the rollouts from the pre-trained models and not train new ones, modify
the parameters in the spectrl/examples/car2d_dirl.py file: set training to
False (line 521) and set prepare_rollouts to True (line 522), and run the same
training commands given above as per your requirements by choosing the right
file name. For example, python -u -m spectrl.examples.car2d_dirl -n 0
-d car2d_k2/choice_test -s 6 -h 10 -b ’j2_’.

B Algorithm Details

https://anonymous.4open.science/r/GenRL_Zenith-7EEB/
https://anonymous.4open.science/r/GenRL_Zenith-7EEB/

Inductive Generalization in Reinforcement Learning from Specifications 23

Algorithm 1 GenRL(R,m,Train)
1: G ← CommonDAG(R)
2: while vertex u ∈ G is chosen in topological order do
3: Compute P (u, i), bestIn(u, i) for all i ∈ Train
4: ηu

i ← InduceDistrbution(u, bestIn(u, i)) for all i ∈ Train
5: for edge e = (u, v) ∈ OutEdges(u) do
6: πe

0 ← LearnBasePolicy(e, ηu
0)

7: κe ← LearnKappaCoefficients(e,m+ 1, πe
0, η

u,Train)
8: Guard← LearnGuardConditions(G, bestIn)
9: return κe, πe

0 for all edge and Guard for all vertices

B.1 Kappa Learning Algorithm (Algorithm 2 LearnKappaCoefficients)

Algorithm 2 LearnKappaCoefficients learns the kappa-coefficients using an ARS
style algorithm with a softmin aggregator.

In more detail, vector κ = [κ0, κ1, . . . , κm−1] is initialized as a normal distribu-
tion vector, where m represents the number of elements in κ. SampleDelta samples
perturbation vectors δ, conforming to the same dimensionality as κ. PerturbKappa
creates perturbed kappa vectors κplus = κ+(δscale ·δ) and κminus = κ−(δscale ·δ).
For each perturbed kappa vector, the equation 1 (KappaPolicy) generates policies
by polynomially combining its elements with the base policy π0

e . These generated
policies are evaluated for each task Ri ∈ Train, with rewards accumulated in
rplus and rminus for policies derived from κplus and κminus for each task, respec-
tively. Score aggregates these rewards into collective performance scores Rplus

and Rminus by computing Rplus ← softmin(rplus) and similarly for Rminus. It
then forms tuples δsamples, pairing each perturbation δ with its corresponding
aggregate scores. DeltaUpdate computes a weighted average perturbation δκ from
these samples, guiding the update of the kappa vector as κupdated ← κ + δκ.
This iterative process of sampling, evaluating, and updating is continued un-
til convergence of the kappa vector is reached, optimizing the policies for the
specified tasks in Train. The reward function Reward based on the Euclidean
distance between the agent’s position and the goal position can be expressed as
Reward = −∥pagent − pgoal∥ where pagent represents the position vector of the
agent, pgoal represents the position vector of the goal, ∥ · ∥ denotes the Euclidean
norm (or Euclidean distance).

Overview Post-DAG traversal, Algorithm 3 conducts a reverse traversal to
ascertain optimal tasks Ri for each edge e, with i ∈ Train, guiding the task from
the initial state u0 to any one of the final states in F . The identified tasks for each
task are stored in De where edge e ∈ G. Subsequently, a dataset D is generated,
on which a decision tree classifier is trained to yield a Guard. Guard directs the
choice of edges for R, such that the likelihood of reaching final state f ∈ F with
maximal success likelihood.
De(e) : Given a set of task indices i ∈ Train and i ∈ De(e), the most optimal

path from the initial state to the final state for the task Ri goes through the edge
e.

24 V. Subramanian et al.

Algorithm 2 LearnKappaCoefficients(e,m, π0
e , Γu,Train)

Kappa Training using a modified Augmented Random Search
1: Initialize κ(m)

where m← number of kappa in the polynomial template
2: while κ not converged do
3: δsamples ← ∅
4: for s = 0 to n_samples do
5: rplus ← ∅, rminus ← ∅
6: δ ← SampleDelta(κ)
7: κplus ← PerturbKappa(κ, δ, δscale)
8: κminus ← PerturbKappa(κ, δ,−δscale)
9: for k = 0 to |Train| and task Ri where i ∈ Train do

10: πplus ← KappaPolicy(κplus, π
0
e , k,m)

11: rplus[k] ← Reward(πplus,Ri)
12: πminus ← KappaPolicy(κminus, π

0
e , k,m)

13: rminus[k]← Reward(πminus,Ri)
14: Rplus ← Score(rplus)
15: Rminus ← Score(rminus)
16: δsamples[s]← (δ,Rplus, Rminus)
17: δκ ← DeltaUpdate(δsamples)
18: Update κ← PerturbKappa(κ, δκ, 1)
19: return κ

Details The Algorithm 3 commences by initializing the outgoing edges O(v)
for every vertex v ∈ G and populating a queue Q with the final states F . In
its reverse traversal phase, the algorithm, for each vertex u dequeued from Q,
examines the incoming vertices. For every incoming vertex v, it removes u from
v’s outgoing edges and for every task i ∈ Train, it checks whether the vertex v
is in bestIn(u, i) and if this condition is true, then the task index i is appended
to De(e) where edge e = (v → u). Then, if O(v) becomes empty, meaning v has
no more outgoing vertices to process, v is enqueued in Q for further processing.
This iterative process continues until all vertices in G are traversed, ultimately
determining the De) for each edge, which identifies the optimal tasks for which
each edge forms a part of the best path to any of the final states F from the
initial state u0.

Now, using De, we establish decision boundaries for vertices u in G where
OutVertices(u) > 1, identifying vertices necessitating decision-making (choose
the optimal outgoing edge for a particular task). For each such vertex u, the
algorithm examines every edge e = (u → v), with v ∈ OutVertices(u). In this
process, the algorithm iterates over each task R in De to create a dataset to train
our decision tree classifier:

(Let dataset D = {(x, y) | x ∈ X, y ∈ Y } denote the dataset, where X is the
set of input feature vectors and Y is the set of output target labels. Each pair
(x, y) in D corresponds to a feature vector x from X and its associated label y
from Y)

Inductive Generalization in Reinforcement Learning from Specifications 25

Algorithm 3 LearnGuardConditions(G, bestIn)
Training a Decision Tree Classifier at every edge where decision making is involved
1: \\ Creating Decision Sets
2: Initialize O(v)← OutVertices(v) for all v ∈ G
3: Initialize Q← F \\ Q is a queue
4: while Q is not empty do
5: vertex u← Q.dequeue
6: for vertex v ∈ InVertices(u) do
7: O(v).remove(u)
8: for i ∈ Train do
9: if v ∈ (bestIn(u, i)) then

10: De(e).append(i) where edge e = (u→ v)
11: if O(v) is empty then
12: Q.enqueue(v)
13: \\ Learning Guard
14: dataset D = {(x, y) | x ∈ X, y ∈ Y } where X ← EnvInputValues(R), Y ← edge e
15: Guard← TrainDecisionTree(D) where Guard = (f : X → Y)
16: return Guard

– If all tasks R are common across all outgoing edges from u to v, the fea-
ture set X for the vertex u is formed using the environmental input values
EnvInputValues(R) (here, Cartesian coordinates of the task’s initial distribu-
tion points), and the target label Y is set as the first outgoing edge for all
tasks R for all De.

– In cases where tasks R are not common to all edges, and a specific task
appears in multiple but not all edges, the algorithm includes in the dataset
for this task the environmental input values X ← EnvInputValues(R) and
target label Y ← edge e for the first edge it appears in while ignoring its
appearances in subsequent edges.

– For tasks unique to an edge, the dataset is constructed such that X ←
EnvInputValues(R) and the target label Y ← edge e, where the task R
appears.

Upon completing data collection for each vertex u, the algorithm proceeds
with training a decision tree classifier TrainDecisionTree(D(u)) for each vertex’s
dataset. The trained model, denoted as Guard(u), establishes a guard for that
particular vertex u.

C Experimental Setup: Implementation Level Details

Model Configuration with Augmented Random Search We use Augmented Random
Search (ARS) algorithm to train both the kappa vector and the base policy with
the following specific hyperparameters:

– Learning Rate: The learning rate is conditionally step decayed, starting from
1 and decreasing to 0.1.

26 V. Subramanian et al.

– Number of Directions Sampled: The model samples 30 directions per
iteration. This sampling is part of the exploration strategy of ARS, allowing
the model to investigate various policy adjustments.

– Number of Top Samples used for Policy Update: We use the top 8
samples for updating the policy. This means that out of all the directions
sampled, the 8 with the highest rewards are used to guide the policy update.

– Number of Steps in Training: During training, the agent is allowed 15
steps in each iteration. This setting defines the length of each episode or trial
used to evaluate the policy during training.

– Number of Steps in Testing: In testing, the agent is allowed a longer
leash with 60 steps per iteration. This extended step count enables a more
comprehensive evaluation of the trained policy.

– Network Architecture: The model’s neural network consists of one input
layer, two hidden layer, and one output layer.

– Activation Function: The ReLU (Rectified Linear Unit) activation function
is used for the input and the hidden layer and the tanh activation function is
used for the output layer.

– No. of rollouts tested on: During testing, we conduct 1000 rollouts for each
task.

Pre-Processing Tasks. While training κe for an edge e ∈ G, we start by filtering
out all tasks Ri ∈ Train for which no feasible policy exists. We do so by creating
task-specific training sets, Traine for edges e ∈ G; if a policy cannot be learnt for
a certain edge (using LearnBasePolicy) for a task Ri, we remove the task from
Traine. Doing this improves the learning for the other tasks for which a feasible
policy exists in the edge e and makes sure the infeasible task does not affect the
training of the other tasks.

Testing Methodology for Successful Unseen Tasks. To test for successful unseen
tasks, we iterate over each inductive task instance Ri that is not included in
Train. For each task, we increment the index i and check the success probability
of the task. If the success probability is above or equal to the success threshold
(in our success threshold is 0.9), we consider the unseen task Ri successful. We
continue this process until we encounter five consecutive indices where the success
probability is below 0.9. At this point, we terminate our testing for successful
unseen tasks.

D Cartesian Plane (Car2D) Benchmarks

D.1 Environment Description

We consider a continuous cartesian plane which consists of a car which is free to
move in the plane. The base objective of the training agent is to teach the car to
reach the final goal from its initial position which could be any point in the 2D
plane. In this environment, both the state space and action space are continuous
in nature.

Inductive Generalization in Reinforcement Learning from Specifications 27

We add complexity to this task by providing an intermediate point for the
car to meet before reaching the end goal or providing rectangular obstacles in its
path of traversal.

The coordinates of the points are given as (x, y) where x denotes its position
along the x-axis and y denotes its position along the y-axis. The dimensions
and coordinates of the obstacle are given by (x1, y1, x2, y2) where x1, y1 gives
the coordinates of the bottom left point of the obstacle and x2, y2 gives the
coordinates of the top right point of the obstacle.

We use certain pre-defined predicates to define our tasks in the environment.
Predicate reach is interpreted as reaching the coordinates of the specified point.
Predicate avoid is interpreted as avoiding the cartesian space of the defined
obstacle.

Assume a rectangular obstacle obs with a = (ax, ay) as the bottom-left corner
and with b = (bx, by) as the top-right corner, then

– reach holds true when point s is near the point goal w.r.t euclidean norm
∥.∥2

reach (goal) = (∥s− goal∥2 < ϵ1)

– avoid holds true when point s is outside the rectangular region defined by
its bottom-left corner a and its top-right corner b

avoid (obs) = (s /∈ [ax, bx]× [ay, by])

D.2 1-Reachability Tasks with Simple Specifications

In our 1-reachability experiments, we start from an initial distribution η(s) and
aim to reach a goal point g1. We examine four different variations of 1-reachability
tasks in our Car2D environment. These variations include inductive updates to
the initial distribution and the goal state, both with and without obstacles which
our car agent must avoid (Illustration in Figure 10a, 10b, 11a, 11b, 12a, 12b).
These experiments help us assess the performance of our algorithms across a
range of simple tasks.

RL Specifications.

– 1-Reachability Task without obstacle: reach g1 from η(s) with updating initial
distribution (Figure 10a),

achieve (reach (g1)); . . . ; achieve (reach (gn))

– 1-Reachability Task with obstacle: reach g1 with updating initial distribution
(Figure 10b),

achieve (reach (g1)); . . . ; achieve (reach (gn)) ensuring (avoid (obs))

The initial distribution is inductively updated by increasing the x-coordinate
in successive instances of an inductive task, i.e. update_init(η(s)) = η(s+ (c1, 0))
where c1 = 0.5 units.

28 V. Subramanian et al.

(a)

(b)

Fig. 10: 1-Reachability
Inductive Task with
moving initial distribu-
tion: a) without obstacle
b) with obstacle

(a)

(b)

Fig. 11: 1-Reachability
Inductive Task with
moving goal point: a)
without obstacle b) with
obstacle

(a)

(b)

Fig. 12: 1-Reachability
Inductive task with mov-
ing initial distribution
and goal point: a) with-
out obstacle b) with ob-
stacle

– 1-Reachability Task without obstacle: reach g1 from η(s) with updating goal
point (Figure 11a),

achieve (reach (g1)); . . . ; achieve (reach (gn))

– 1-Reachability Task with obstacle: reach g1 with updating goal point (Fig-
ure 11b),

achieve (reach (g1)); . . . ; achieve (reach (gn)) ensuring (avoid (obs))

The goal is also inductively updated by increasing the x-coordinate in succes-
sive instances of an inductive task, i.e. update_pred(reach (g1)) = reach (g1 +
(c2, 0)) where c2 = 0.5 units.

– 1-Reachability Task without obstacle: reach g1 from η(s) with updating initial
distribution and goal point (Figure 12a),

achieve (reach (g1)); . . . ; achieve (reach (gn))

– 1-Reachability Task with obstacle: reach g1 with updating initial distribution
and goal point (Figure 12b),

achieve (reach (g1)); . . . ; achieve (reach (gn)) ensuring (avoid (obs))

Inductive Generalization in Reinforcement Learning from Specifications 29

Fig. 14: No. of successful Unseen Tasks for Sim-
pler 1-Reachability experiments.

Fig. 15: 1-Reachability Task
(updating initial distribu-
tion)

Benchmark Iterations % gen.
(Best Iter)|Train| = 6 200 400 600 800 1000

1-Reachability Task without Obstacle
Figure 10a 48 99 99 99 99 1650
Figure 11a 28 33 41 41 41 683
Figure 12a 5 8 8 9 9 150

1-Reachability Task with Obstacle
Figure 10b 18 22 22 22 22 367
Figure 11b 15 15 15 15 15 250
Figure 12b 8 8 8 8 8 133.33

Table 2: No. of successful Unseen task instances for Simpler 1-Reachability exper-
iments across multiple iterations. The number(s) in boldface under “Iterations”
are the largest (i.e. best) generalization counts for that specification.

The initial distribution and the goal are inductively updated by increasing
their x-coordinates by c1 = 0.5 units and c2 = 0.5 units respectively in succes-
sive instances of an inductive task, i.e., update_init(η(s)) = η(s + (c1, 0)) and
update_pred(reach (g1)) = reach (g1 + (c2, 0)).

Observations. From Table 2, it is evident that our proposed GenRL method
demonstrates significantly superior generalizability across various iterations. We
can also see that the GenRL method consistently exhibits higher performance
metrics than the baseline in every evaluated scenario from Figure 14. Figure 15
shows the trajectory of the car agent on a 1-reachability task with updating
initial distribution which shows our model’s capability to generate policies that
successfully satisfy unseen tasks for simpler environments and specifications.

Figures 6b and 6d generally perform poorly, with the exception of PSMP in
Figure 6b. Notably, PSMP demonstrates absolute success in Figure 6b but
fails when obstacles are introduced or when trajectories are no longer simple

30 V. Subramanian et al.

Benchmark Iterations % gen.
(Best Iter)|Train| = 6 200 400 600 800 1000

NReach(1) 11 11 12 12 12 200
NReach(2) 8 8 9 9 9 150
NReach(3) 8 8 8 8 8 133
NReach(4) 5 5 5 5 5 83
NReach(5) 5 5 5 5 5 83

Table 3: No. of successful Unseen task instances for N-Reachability experiments
without obstacles across multiple iterations. The number in boldface under
Iterations represents the best generalization for the benchmark.

proportional functions, as seen in Figure 6d and 8a. PSMP, being a planning
algorithm rather than a learning algorithm, employs a proportional controller
that maps states to actions. This makes PSMP effective in tasks with constant
and proportional trajectories but unsuitable for most real-world tasks that involve
significant variance in trajectories, as demonstrated by the results.

D.3 N-Reachability Tasks without obstacles

In N-Reachability Tasks, we start from an initial distribution η(s) and aim to
reach the goal point gn while navigating via g1, . . . , gn1

intermediate goal points.
This experiment is designed to test our model’s generalization capabilities on
long-horizon tasks. Here, the initial distribution η(s) and all the goal points
g1, . . . , gn inductively update.

RL Specifications. N -Reachability Task without obstacle (NReach(n): reach a set
of n goals states g1, g2, . . . , gn in sequence (Figure 6a),

achieve (reach (g1)); . . . ; achieve (reach (gn))

The initial distribution is inductively updated by increasing the x-coordinate
in successive instances of an inductive task, i.e. update_init(η(s)) = η(s+ (c1, 0))
where c1 = 0.5 units. The goal is also inductively updated by increasing the
x-coordinate in successive instances of an inductive task, i.e.
update_pred(reach (g1, . . . , gn)) = reach (g1, . . . , gn + (c2, 0)) where c2 = 0.5
units.

Observations. Table 3 clearly demonstrates that GenRL exhibits high general-
izability across multiple iterations in N-reachability tasks. Figure 6b highlights
that GenRL consistently outperforms the baselines in terms of satisfying unseen
tasks across all N-reachability benchmarks. Figure 16 illustrates the trajectory of
the car agent in a NReach(3) task where we can see how unseen tasks (marked in
red) traverses through the intermediate goal points to reach g3.

Inductive Generalization in Reinforcement Learning from Specifications 31

Fig. 16: 3-Reachability Task without obstacle (updating initial distribution and
goal) - Trajectory

D.4 N-Reachability Tasks with Obstacles

In N-Reachability Tasks, we start from an initial distribution η(s) and aim to
reach the goal point gn while navigating via g1, . . . , gn1

intermediate goal points
while avoiding the obstacles obs. This experiment is designed to test our model’s
generalization capabilities on long-horizon tasks. Here, the initial distribution
η(s) and all the goal points g1, . . . , gn inductively update.

RL Specifications. N -Reachability Task with obstacle (NReachObs(n)): reach
a set of n goals g1, g2, . . . , gn in sequence while avoiding the obstacles in obs
(Figure 6c),

achieve (reach (g1)); . . . ; achieve (reach (gn))

ensuring (avoid (obs))

The initial distribution is inductively updated by increasing the x-coordinate
in successive instances of an inductive task, i.e. update_init(η(s)) = η(s+ (c1, 0))
where c1 = 0.5 units. The goal is also inductively updated by increasing the
x-coordinate in successive instances of an inductive task, i.e.
update_pred(reach (g1, . . . , gn)) = reach (g1, . . . , gn + (c2, 0)) where c2 = 0.5
units.

32 V. Subramanian et al.

Fig. 17: 3-Reachability Task with obstacle (updating initial distribution and goal)
- Trajectory

Observations. Table 4 clearly shows that GenRL has very high generalizability
across multiple iterations in tasks with obstacles. Figure 6d shows that GenRL
consistently achieves better generalizability than the baselines in all scenarios.
However, it can be noted that the generalizability of GenRL shows a marginal
decline when compared to tasks without obstacles. This observation can be
attributed to the increased complexity and difficulty presented by the obstacle
specifications. Figure 17 shows the trajectory of the car agent on a NReachObs(3)
task.

D.5 Choice Tasks

In choice tasks, we start from an initial distribution η(s) and choose between
navigating to intermediate goal g1 or g2 based on reachability and then reach
goal while avoiding obstacle obs. This experiment allows us to test the optimality
of our guards (branching predicate to choose between the goals) and test long-
horizon reachability on complex decision-involving specifications (Illustration in
Figure 2a, 9a, 9c).

RL Specifications. Choice Task - Choice(l) (Figure 2a, 9a, 9c): A stack of l
sub-tasks (or levels), where each sub-task i requires reaching a goal goali while

Inductive Generalization in Reinforcement Learning from Specifications 33

Benchmark Iterations % gen.
(Best Iter)|Train| = 6 200 400 600 800 1000

NReachObs(1) 8 8 8 8 8 133.33
NReachObs(2) 7 7 7 7 7 116.33
NReachObs(3) 5 5 5 5 5 83.33
NReachObs(4) 4 5 5 5 5 83.33
NReachObs(5) 4 4 4 4 4 83.33

Table 4: No. of successful Unseen task instances for N-Reachability experiments
with obstacles across multiple iterations. The number in boldface under Iterations
represents the best generalization for the benchmark.

Benchmark Iterations % gen.
(Best Iter)

Guard
predicate|Train| = 6 200 400 600 800 1000

Figure 2 6 6 7 7 7 117 (i ≤ 5)

Figure 9a FAIL 5 5 5 5 84 (i ≤ 5)

Figure 9c FAIL 4 5 5 5 84 (i ≤ 5), (i ≤ 5)

Table 5: No. of successful Unseen task instances for Choice experiments. The
number in boldface under Iterations represents the best generalization for the
benchmark.

avoiding the obstacle obsi, either through the (sub)goal gi1 or gi2,

(achieve (reach (gi1) or reach (gi2));

achieve (reach (goali)))
l

ensuring (avoid (obs))

where, 1 ≤ i ≤ l.
We use the superscript l to indicate that the enclosed specification is repeated

l times. The inductive tasks on the above tasks inductively modify the initial dis-
tribution η(s), and the goal positions goali. The initial distribution is inductively
updated by increasing the x-coordinate in successive instances of an inductive
task, i.e. update_init(η(s)) = η(s+ (c1, 0)) where c1 = 1 units. The goal is also
inductively updated by increasing the x-coordinate in successive instances of an
inductive task, i.e. update_pred(reach (goali)) = reach (goali + (c2, 0)) where
c2 = 1 units.

Observations. From Table 5, it is evident that our proposed GenRL method
demonstrates significantly superior generalizability across various iterations.
Figures 2b, 9b, and 9d illustrate how our learned guard optimally indicates
which edge to traverse based on the task index, enabling collision-free traversal.

34 V. Subramanian et al.

E Tower-Destacking Benchmarks

Environment Description. The 2-link planar arm environment is similar to the
Reacher-v2 environment with a modified state and action space. The dynamics
of the arm can be described through the joint angles θ1 and θ2, which dictate
the Cartesian coordinates x and y of the end effector. The relationship between
these variables is captured by the forward kinematics equations:

x = l1 cos(θ1) + l2 cos(θ1 + θ2)

y = l1 sin(θ1) + l2 sin(θ1 + θ2)

where l1 and l2 represent the lengths of the first and second links, respectively.
The state space includes the x and y cartesian coordinates, while the action space
consists of θ1 and θ2.

The predicate reach holds true when point s is inside the rectangular region
(block) defined by its bottom-left corner a and its top-right corner b

reach (s) = (s ∈ [ax, bx]× [ay, by])

RL Specifications. We create five distinct benchmarks to evaluate our model’s
ability to generalize to long-horizon, complex tasks in this environment.

– Pick and Drop - Same Side (Figure 7 a)
The task involves performing a pick-and-drop operation. Starting from a
designated target dropbox, the arm grabs a box from the source tower and
moves it to the dropbox where both the target dropbox and the source tower
are on the same side of the arm.
Length of arm: l1 = 10 units and l2 = 10 units.

achieve (reach(top_block_source_tower));

achieve (reach(target_box)

– Pick and Vertical Stack - Same Side (Figure 1)
The task involves performing a pick-and-drop operation. Starting from a
designated source stack of boxes, the arm grabs a box from the source stack
and stacks it vertically onto a target stack where both the source and the
target stacks are on the same side of the arm.
Length of arm: l1 = 10 units and l2 = 10 units.

achieve (reach(top_block_target_tower));

achieve (reach(top_block_source_tower)

Inductive Generalization in Reinforcement Learning from Specifications 35

– Pick and Drop - Opposite Side (Figure 7 b)
The task involves performing a pick-and-drop operation. Starting from a
designated target dropbox, the arm grabs a box from the source tower and
moves it to the dropbox where both the target dropbox and the source tower
are on the opposite side of the arm.
Length of arm: l1 = 5 units and l2 = 5 units.

achieve (reach(top_block_source_tower));

achieve (reach(target_box)

– Pick and Vertical Stack - Opposite Side (Figure 7 c)
The task involves performing a pick-and-drop operation. Starting from a
designated source stack of boxes, the arm grabs a box from the source stack
and stacks it vertically onto a target stack where both the source and the
target stacks are on the opposite side of the arm.
Length of arm: l1 = 10 units and l2 = 10 units.

achieve (reach(top_block_target_tower));

achieve (reach(top_block_source_tower)

– Pick and Horizontal Stack - Same Side (Figure 7 d)
The task involves performing a pick-and-drop operation. Starting from a
designated source stack of boxes, the arm grabs a box from the vertical stack
and stacks it horizontally along the x-axis onto a target stack where both the
source and the target stacks are on the same side of the arm.
Length of arm: l1 = 10 units and l2 = 10 units.

achieve (reach(leftmost_block_target_tower));

achieve (reach(top_block_source_tower)

F OpenAI Gym Classic Control Benchmarks

F.1 Cartpole

Environment Description. The objective in the Cartpole environment is to
balance a pole on a moving cart by applying force to the cart’s base. The action
space is discrete, with two possible actions: moving the cart left or right. The
observation space includes the cart position, cart velocity, pole angle, and pole
angular velocity.

Predicate holdpole can be defined as:

holdpole(goal) = (|θ − goal| < ϵ) for time t

where θ is the angle of the pole.

36 V. Subramanian et al.

RL Specifications. The goal is to balance a pole on a moving cart by applying
force to the cart’s base i.e. reach a certain theta goal and hold it for time t.

achieve (holdpole(goal))

The induction is on the length l of the cartpole which involves increasing the
length by l + 0.4 units. The training range for l is from 0.4 to 2 units.

F.2 Pendulum

Environment Description. The goal in the Pendulum environment is to keep a
free pendulum standing up by applying torque at the pivot point. The action
space consists of a single continuous value representing the torque applied to the
pendulum’s free end. The observation space provides the x-y coordinates of the
pendulum’s free end and its angular velocity, represented by cosine and sine of
the angle and the angular velocity.

Predicate reachtheta can be defined as:

reachtheta(goal) = (|θ − goal| < ϵ)

where θ is the angle of the pendulum.

RL Specifications. The goal is to keep a free pendulum standing up by applying
torque at the pivot point i.e. reach a certain theta goal.

achieve (reachtheta(goal))

The induction is on the mass mp of the pendulum which involves increasing
the mass by mp + 0.1 units. The training range for mp is from 1 to 1.4 units.

F.3 Acrobot

Environment Description. The Acrobot’s challenge is to swing up the end of a
two-link robot arm above a certain threshold. The action space is discrete and
deterministic, representing the torque applied at the joint between the two links.

Predicate reachtip can be defined as:

reachtip(goal) = (| − cos(θ1)− cos(θ2 + θ1)| > ϵ)

where θ1 is the angle of the first joint, and θ2 is the angle of the second joint
w.r.t the first joint.

RL Specifications. The goal is to swing up the end of a two-link robot arm above
a certain threshold i.e the tip must reach a certain point goal

achieve (reachtip(goal))

The induction is on the mass ma of the acrobot which involves increasing the
mass by ma + 0.1 units. The training range for ma is from 0.2 to 0.6 units.

Inductive Generalization in Reinforcement Learning from Specifications 37

Benchmark Iterations % Gen.
|Train| = 6 100 200 300 400 500 (Best Iter)
Cartpole 9 11 11 14 12 233
Pendulum 9 8 10 9 20 333
Acrobot 0 6 7 9 10 167

Table 6: No. of successful Unseen task instances for OpenAI Gym Classic Control
experiments. The number in boldface under Iterations represents the best
generalization for the benchmark.

Fig. 18: Template Comparison: Mean Succ. Prob. on Train in 1-Reachability
Inductive Task with moving initial distribution

F.4 Observations

Table 6 clearly shows that GenRL satisfies a great number unseen tasks across
multiple iterations in the control benchmarks. This shows GenRLs capability to
even inductively generate policies where the update is on environment parameters
rather than on specification parameters.

G Template Complexity Analysis

The complexity of the policy generator template offers a tradeoff between gen-
eralizability and the difficulty of learning (Figure 18): the x-axis represents the
number of training iterations and the y-axis represents the success probabilities
across all tasks, Ri ∈ Train (each task shown in a different color). For successful
learning, the success probability should increase with more training iterations
and saturate at a high probability. We consider two templates: (a). constant
update template [πi+1] = [πi] + κ0 that only requires learning κ0 and (b)
linear template [πi+1] = κ1 · [πi] + κ0, with two coefficient vectors κ0 and κ1

to be learned.
Figure 18 shows the mean success probability over the tasks Ri ∈ Train:

constant update template oscillates around a low success probability of around 0.2,

38 V. Subramanian et al.

demonstrating that this template is unable to learn a reasonable policy generator.
On the other hand, linear template seems to be effective, converging to a success
high probability close to 1.0. At the same time, the linear templates has double
the number of trainable parameters as compared to constant update template,
making it a more involved training exercise. This study outlines the importance
of selecting appropriate templates to learn the policy generator successfully.

	Inductive Generalization in Reinforcement Learning from Specifications

